Free Memory

Free Memory

$FP

$FP + 16

$FP + alloc

$FP - offset

$FP

$FP + 16

$FP + alloc

SP o
o Frame Record =2 @Load %29, x30 before we deallocate memary.
2 dealloc| -~~~ """ T 7T 77777
yet g Function Variables @_‘}Memory for function variables no longer reserved
SP » g on the stack.
Stack Frame for % Stack Frame for
calling code (in OS) g calling code (in OS)
(od)
SP always point to top of the Stack i ldp =29, x30, [sp]. dealloc
Free Memory
Free Memory
Increment SP by
adding +ve number
SP o SP=FP >
& Frame Record e If_éi‘.lStore %29, x30 in newly allocated memory. Frame Record
w
e glhag] [T T T T T T T T T T T T T L I e e
E Function Variables (3)Memory is also allocated for function variables now. Function Variables
5]
W Stack Frame for Stack Frame for
5{ calling code (in OS) calling code (in OS)
¥ stp 29, x30, [SP, alleoc]! sub sp, sp, -(mem_temp) & -16
Free Memory
Free Memor
y SP 3o
(x29) ooringhpientiid ' s
FP = SP - 3 $FP FP—»}---——------—-————
Frame Record Frame Record
---------------- $FP + 16 U
Function Variables Function Variables
$FP + alloc
Stack Frame for Stack Frame for
calling code (in OS) calling code (in OS)

mov %29, sp

add sp, sp, -(mem_temp) & -16

Address

low memory

Program Counter

(PC)

The Program Counter is a register which
points to the current instruction being

executed.
When you do display/i $pc, you are

displaying one instruction (i) at a time,
starting from the current instruction (PC).

Stack Pointer e
(SP)

The Stack Pointer always point to the

top of the stack. When you need more
memory, the Stack grows “backwards”
towards smaller addresses, hence we
say the Stack Pointer is decremented

when we allocate more memary.

high memory

Memory (RAM)
0x0000000000000000
0S 0x0000000000000000
0x0000000000000000
Program
Heap
The Stack contains multiple Stack Frames. Each Stack
Frame holds a function's parameters, local variables, and
return values.
$FP - offset
Il < Allocated AFTER Frame Pointer is set,
i Temporary Variables therefore offset is negative.
/| (De)aliocated in smaller code blocks inside the function.
dd sp, sp, -X & -16 "
j i P Frame Pointer
; (FP)
Frame Record ,
{-‘) The Frame Pointer always
: Frame Pointer [Ixfgj and Link Register (x30) points to the Frame Record,
] Each x register is 64-!J|ts = B bytes. and navar maves: Wa 1ss FP
Free Memory ,, Frame Record is two registers = 16 bytes. - & AN ARSHAR 16 find our
! * variables, since SP is always
f g ‘ moving when we allocate or
4 Function Variables deallocate memory.
I Allocated at the start of the function using STP.
" Deallocated at the end of the function using LDR.
}f $FP + alloc
! s
! g
s
s
functionB() 4
4 SP addresses need to be divisible by 16
functionA()
StEle Memory for function variables
main()
Frame Record
4
alloc =- (16 + func_vars) & -16

calling code
OXFFFFFFFFFFFFFFFF

in OS

dealloc = -alloc
stp x29, x30, [SP, alloc]!

Idr x29, x30, [SP], dealloc]

