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mov %29, sp
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Address

low memory

Program Counter

(PC)

The Program Counter is a register which
points to the current instruction being

executed.
When you do display/i $pc, you are

displaying one instruction (i) at a time,
starting from the current instruction (PC).

Stack Pointer e
(SP)

The Stack Pointer always point to the

top of the stack. When you need more
memory, the Stack grows “backwards”
towards smaller addresses, hence we
say the Stack Pointer is decremented

when we allocate more memary.

high memory

Memory (RAM)
0x0000000000000000
0S 0x0000000000000000
0x0000000000000000
Program
Heap
The Stack contains multiple Stack Frames. Each Stack
Frame holds a function's parameters, local variables, and
return values.
$FP - offset
Il < Allocated AFTER Frame Pointer is set,
i Temporary Variables therefore offset is negative.
/| (De)aliocated in smaller code blocks inside the function.
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alloc =- (16 + func_vars) & -16

calling code
OXFFFFFFFFFFFFFFFF

in OS

dealloc = -alloc
stp x29, x30, [SP, alloc]!

Idr x29, x30, [SP], dealloc]



